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A zinc endoprotease produced by Streptomyces caespitosus (ScNP) specifically hydrolyzes
the peptide bond at the imino side of aromatic residues and is the smallest protease found
to date. Although ScNP carries the zinc-binding sequence HEXXH, its primary structure of
132 amino acid residues differs from those of other known zinc metalloendoproteases.
X-ray structural analysis of ScNP at 1.6 A resolution revealed that despite a lack of
sequence homology, the common topological feature of main-chain folding and a g-turn
containing methionine, which is a feature of the zinc metalloendoprotease superfamily of
metzincins, is conserved in ScNP. The zinc atom of ScNP is tetrahedrally ligated by the two
histidines in the HEXXH sequence, an aspartate residue and a water molecule, Thus, ScNP
represents a novel subfamily of metzincins with a HEXXHXXGXXD zinc-binding se-
quence. A plausible substrate recognition pocket to which aromatic residues bind is located
near the catalytic zinc ion.
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Structure of the Zinc Endoprotease from Streptomyces caespitosus'’

protease.

Zinc metalloendoproteases are widely involved in the
intracellular processing and degradation of proteins. Vallee
and Auld showed that these enzymes isolated from bacteria
of Bacillus species share the consensus amino acid se-
quence, HEXXH, in their active sites and that the two
histidine residues in the sequence ligate the catalytic zinc
ion (1, 2). According to the sequence homology, Jiang and
Bond grouped known 40 amino acid sequences of zinc
endoproteases into five distinct subfamilies (astacin, ser-
ratia, matrixin, snake venom, and thermolysin)} (3).
Although the number of amino acid residues, sequence and
substrate specificity are totally different among the fam-
ilies, all families except thermolysin have the consensus
sequence HEXXHXXGXXH. The three histidine residues
in the HEXXHXXGXXH sequence are zinc ligands.

In 1969, Yokote and Noguchi found a novel zinc endo-
protease (ScNP) in the culture broth of Streptomyces
caespitosus (4, 5). This enzyme, which belongs to the
“Streptomyces Extracellular Neutral Proteinase Family
(M7)” according to Rawlings and Barrett (6), consists of a
single polypeptide chain of 132 amino acid residues with
one disulfide bond, and it specifically cleaves the peptide
bond at the imino sides of aromatic amino acid residues (7).
Calcium ions play an essential role in the thermostability of
ScNP but are not directly involved in its catalytic activity
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(4). For example, after incubating ScNP for 10 min at 60°C
in the presence of calcium, it retains half the maximum
catalytic activity shown at 40°C. However, ScNP from
which calcium has been removed by dialysis against deion-
ized water starts losing activity from 40°C and completely
loses it at 60°C. Although ScNP does not share overall
homology with the amino acid sequences of other zinc
proteases, it contains the sequence HETGHVLGLPDH
between residues 83 and 94. By comparison with the
consensus sequence HEXXHXXGXXH, His 83 and His 87
are ScNP zinc ligands. However, it was uncertain whether
the third zinc ligand is Asp 93 or His 94.

In this study we determined the crystal structure of
ScNP at 1.6 A resolution to identify the zinc-binding amino
acid residues and the substrate-recognition mechanism.

METHODS

ScNP was purified and crystallized as described (8).
Crystals of ScNP grown at 4°C from acetone were of space
group P2,2,2,, with the unit cell dimensions a=55.21 A;
b=55.27A; ¢=37.60 A. Since acetone is volatile, the
crystals were transferred to 50% MPD containing 5 mM
calcium acetate (mother liquor) before X-ray studies. Five
possible heavy atom derivatives [CH,HgCl, HgCl;, Pb-
(CH,C00)., K;IrCl,, K,PtCl;] were obtained by soaking.
The crystals soaked in 1 mM EDTA for 30 min were
processed to locate the catalytically essential Zn** ion.
ScNP complexed with N-carbobenzoxy-Gly-Tyr (N-CBZ-
Gly-Tyr) was co-crystallized.

X-ray diffraction data were collected on a Rigaku four-
circle diffractometer. Ni-filtered CuKa radiation was
produced by a Rigaku RU-300 rotating anode generator
operated at 40 kV and 300 mA. Major heavy atom sites of
the CH,HgCl derivative were located on a difference
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Patterson map, and single isomorphous replacement phases
were calculated. Heavy atom sites of the other derivatives
were determined using difference Fourier maps. Heavy
atom parameters including position, occupancy, and tem-
perature factors were refined, and final best phase angles
based on the five derivatives were calculated.

Although the electron density map at 2.5 A resolution
(MIR map) was sufficient to recognize secondary structure,
it was further improved using the program SQUASH (9). A
(Fuative — Feora, amiz) difference Fourier map revealed two
prominent peaks. The catalytically essential zinc ion was
assigned to the higher peak and the calcium ion to the lower.
The zinc site coincided with the highest electron density in
the MIR map. The model of ScNP was built using a Silicon
Graphics Iris workstation with the program TURBO-
FRODO (10).

The initial model was refined in iterative cycles consist-
ing of crystallographic refinement with the programs
X-PLOR (11) and PROLSQ (12) and manual model correc-
tion. The final model included 1,017 non-hydrogen protein
atoms and 132 solvent molecules. The final R factor for the
12,926 independent reflections between 10.0 and 1.6 A
resolution with F>2¢(F) was 0.166. The r.m.s. bond
length and bond angle deviations from ideal values were
0.017 A and 4.3°, respectively. The coordinates were
deposited in the Brookhaven Protein Data Bank. The model
of the N-CBZ-Gly-Tyr was built in an (Feompiex — Fnauve)
electron density based on calculated native phase angles,
and it was refined in the same way as the native form. The
final R factor was 0.180 for the 8,415 independent reflec-
tions between 10.0 and 2.0 A resolution.

A Ramachandran plot (Fig. 1) of the refined native model
at 1.6 A resolution shows that all non-glycine amino acid
residues have ¢/ angles in favorable regions. Examina-
tion using the program PROCHECK (13) showed that there
were no unacceptable geometries in the model.

o

Fig. 1. Ramachandran plot for the refined model of ScNP.
Glycines are represented by triangles. The Ramachandran plot was
produced by the program PROCHECK (13).
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RESULTS AND DISCUSSION

The refined structure of ScNP at 1.6 A resolution shows
that it consists of a highly twisted five-stranded £-sheet,
four a-helices termed A, B, C, and D, one catalytically
essential zinc ion and one calcium ion. The secondary
structural elements connected by loops are disposed as
shown in Fig. 2. The £-sheet, which contains four parallel
strands (I, I1, III, and V) and one antiparallel strand (IV), is
flanked by helices A and C on its concave side, while its
convex side is exposed to solvent (open-sandwich struc-
ture). The entire polypeptide chain of ScNP is divided into
two domains. The N-domain (Thr 1-Asp 76) is organized as
relatively regular secondary structural elements including
the five-stranded £-sheet, helices A and B, whereas the
polypeptide chain of the C-domain (Gly 90-Gly 132) folds
in a more irregular manner. The long helix C, which is
located immediately behind the catalytic zinc, connects the
two domains.

These two domains form the zinc-containing active site
cleft, which is bordered by S-strand IV, helix C, and a
stretch of a loop adjacent to the C-terminus of this helix.
The C helix runs roughly parallel to the cleft through the
center of ScNP and includes the HEXXH sequence, of
which the two histidine residues ligate the catalytic zinc
through the Ne2 atoms. The helix terminates abruptly at
Gly 90, and the polypeptide chain turns sharply away from
it. This conformation enables Asp 93 to be near the
catalytic zinc, and accordingly the OJ1 atom of Asp 93

Fig. 2. Ribbon drawing of the ScNP structure prepared using
MOLSCRIPT (22) and RASTER3D (23, 24). The amino and
carboxy termini are labeled N and C, respectively. Cys 99 and Cys
112 represent the two cysteines of the disulfide bridge. The four
helices (A-D) are from residues 15-26, 69-71, 77-88, and 119-128;
and the five 8-strands (I-V) from residues 2-7, 32-35, 42-46, 54-57,
and 64-67. The zinc and calcium ions are shown as red and yellow
spheres, respectively. The zinc ligands (His 83, His 87, Asp 93, and
the water molecule) are shown in blue. Leu 102 and Met 103 in the
Met-containing £-turn (magenta) provide a hydrophobic environ-
ment to His 83.
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Fig. 3.

(a) The active site structure of ScNP. The superimposed electron density was derived from a (|F,}—
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a. phases obtained from the refined 1.6 A structure with the contribution from the zinc ligands omitted. (b) Geometries of the zinc ligands.

Fig. 4. The structure and interactions (distance <3 A between
non-hydrogen atoms) around the bound calcium site.

ligates the zinc ion, together with the N2 atoms of His 83
and His 87. These three ligands plus a water molecule
complete tetrahedral ligation of the catalytic zinc (Fig. 3).

"By analogy ‘with—thermolysin-(14),-the_bound _water, the

nucleophilicity of which is enhanced by a hydrogen bond to
the side chain carboxyl of Glu 84, and at the same time by
the ligation of the zinc, probably attacks the scissile peptide
bond.

After Asp 93, the polypeptide chain forms a loop struc-
ture (loop-1) that consists of alternate and consecutive type
I and type III 8-turns, including His 94-Gly 97 (typeI), Pro
98-Glu 101 (type III), Glu 101-Ser 104 (type I), and Gly
105-Pro 108 (type III). The third methionine-containing
B-turn (Glu 101-Leu 102-Met 103-Ser 104) is equivalent
to the “Met-turn” found in the “metzincins” (15). The side

Fig. 5. Molecular surface representation of ScNP complexed
with N-CBZ-Gly-Tyr. The sites of glycines 105, 106, and 107 are
colored blue. The N-CBZ-Gly-Tyr molecule is colored orange. The
zinc ion is represented as a red sphere. Tyr 95 which probably

* participates “in—catalysis—is-shown-in-yellow._ This_diagram was

prepared using the program GRASP (25).

chains of Met 103 and Leu 102, which are 3.8 A from His
83, provide a hydrophobic environment to the zinc-ligating
His 83 side chain. This hydrophobic environment may
influence the zinc acidity and promote the proton dissocia-
tion from Zn?*~0OH,. Subsequent to loop-1, the polypeptide
chain from Gly 105 to Asn 114 folds in a completely
irregular manner (loop-2). The disulfide bridge between
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Fig. 6. (a) Topological structure of main-
chain folding of zinc metalloendopro-
teases. The square and the circle represent a
p-strand and an a-helix, respectively. (b)
Comparison of the amino acid sequences of
zinc-binding sites of zinc metalloendopro-
teases.

Snake venom Thermolysin
(b) ’s 03
ScNP’ DSTRVTAHETGHVLGLPD
Collagenase26 YNLHRVAIﬁHELi&H S_ILG£|SH
Astacin?? CVYHGTTI I|H|E|L M|H|A I|G|F Y H
Snakevenom?® F M v A v T M T|H|E|L[clu|n[L]le|M E H
Serralysin?s DYGRQTTFT|[H|E|I|c]|H|[Aa|L]|G[L]Ss H
Thermmolysin30 SGGIDVAHEDTﬂAVTDYT

Cys 99 and Cys 112 interconnects loops-1 and -2 and
probably stabilizes the more fragile three-dimensional
structure of the C-domain. Helix D, which is the only
secondary structure of the C-domain, is located on the
C-terminus.

Figure 4 shows the structure around the calcium found in
ScNP. The ion, which is located near helices A and C, 17.0
A from the catalytic zinc, interacts with eight oxygen
atoms: 061 and 042 of Asp 76, Oy1 of Thr 78, and five
waters. The distances between the calcium and the eight
oxygen atoms are about 2.8 A. WAT 222 and Ovy1of Thr 78
are further connected to the carboxyl oxygen atoms of Glu
17 through hydrogen bonds. Since none of the residues in
helix A other than Glu 17 interact with the other parts of
the molecule, this interaction network suggests that the
calcium ion contributes to the thermostability of ScNP by
helping to link the A and C helices.

Inspection of the ScNP structure revealed a plausible
substrate recognition pocket near the catalytic zinc ion. A
pocket into which an aromatic side chain of a polypeptide
may fit is formed by Gly 105, Gly 106, and Gly 107 on one
side, Gln 71, Tyr 75, and Val 80 on the other and of Asp 76
at the bottom. Figure 5 shows the structure of the ScNP
complexed with N-CBZ-Gly-Tyr. According to Yokote and
Noguchi (5), ScNP hydrolyzed N-CBZ-Gly(Glu)-Xaa grad-
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ually when Xaa is Phe, but the enzyme was inactive toward
Tyr. Although we supposed that the carbonyl oxygen of the
Gly residue of N-CBZ-Gly-Tyr binds to the catalytic zinc
(mode A) so that the side chain of the Tyr residue can be
accommodated in the pocket, N-CBZ-Gly-Tyr binds to the
cleft of ScNP through ligation of the carbonyl oxygen of the
carbobenzoxy group (mode B). This binding mode is stabil-
ized by the hydrogen bond between the Tyr side chain of the
compound and ScNP (Tyr 75). Of course, binding mode A
should occur to the same degree as B, and accordingly the
compound should be hydrolyzed by ScNP. However, ScNP
is bound by N-CBZ-Gly-Tyr again in the two modes after
hydrolysis, and eventually the more stable complex with
the binding mode B is accumulated. Thus the activity of
ScNP toward N-CBZ-Gly-Tyris lost in accordance with the
accumulation of the complex B. This presumption explains
why ScNP is active toward N-CBZ-Gly-Phe, which can not
form a hydrogen bond with Tyr 75. Tyr 95 seems to play a
role in catalysis similar to that of Tyr 157 in thermolysin
(15, 16).

Figure 6a shows a topology diagram of the zinc endo-
proteases with known structures (17-21). Although the
topology of the S-sheet in thermolysin differs somewhat
from that of the others, their structures are basically
composed of a five-stranded £-sheet and a central «-helix
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with the zinc-binding HEXXH sequence as a common
structural component. ScNP is more topologically similar
to the catalytic domain of fibroblast collagenase and astacin
than to snake venom protease. Moreover, the amino acid
sequence of ScNP around the zinc ligand (Tyr 75-Asp 93) is
homologous to that of collagenase with 58% identity,
although the other regions are not homologous. This se-
quence identity is not found among ScNP and astacin,
serralysin, thermolysin, except for the HEXXH sequence
(Fig. 6b). Despite the homology between ScNP and col-
lagenase, the third aspartate zinc-ligand of ScNP is re-
placed by a histidine in collagenase. Thus, we propose that
ScNP, together with the corresponding enzymes from other
species of Streptomyces (6), represents a novel subfamily
with the HEXXHXXGXXD zinc-binding motif and a “Met-
turn.”
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